Surveying and quantification of wild life in different parts of the world is crucial to our understanding of ecosystem and environment and how it is changing as a function of natural and artificial changes. For this reason, wild life in different habitat is monitored regularly and periodically for accurate quantification. While the procedures and methodologies undertaken for this task are majorly based on approximation and tedious counting, technological advancements and recent innovations highlight tremendous potential that can significantly shorten the time taken by these procedures while being extremely convenient, sustainable and feasible for application.
Keeping a count of sea gulls can be made much more convenient by using UAVs or drones that literally provide a “bird’s eye” view of the site they observe. But while drones and other aerial robots can record sea gulls in different locations, it is still a technical challenge to translate this recorded imagery or data into survey data that can be quantified. Seabirds, in particular, present the particular challenges of nesting in large, often inaccessible colonies that are difficult to view for ground observers, which are commonly susceptible to disturbance.
To counter this problem and to develop a system that practically useful for counting of sea gulls, researchers at the University of York and the University of Gloucestershire in UK formulated a research paper titled, “Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds“. In this publication, they proposed a protocol for carrying out UAV surveys of a breeding seabird colony and subsequent image processing to provide a semi-automated classification for counting the number of birds.
The researchers extensively studied the behavioral patterns of sea gulls and adjusted their algorithm to account for changes in the movements of the birds with time and location. The crucial factor considered when studying behavioral patterns was to ensure physical isolation of the drones or UAVs from the birds during remote monitoring of sea gulls – protecting the birds from injury due to their impact with the robots and preventing loss of equipment due to bird attacks.
Photoscan is a commercially available program that uses algorithms to automatically detect features in the images such as edges and points from the unordered aerial image collection. It is able to convert the images into a single 2D orthomosaic without the individual scale, tilt, and relief distortions of each image.
All images were manually assessed prior to processing and, where necessary, deleted from the subset if they were distorted or blurred from the flying motion. All remaining images for each sub-colony of the bird were added to the software, and image processing followed the recommended procedure.
Classification of recorded data acquired by the drones is a user-driven process that involves acquiring a sample of pixels from a known class from the image that provides an accurate representation of the class to create a unique spectral signature for each class; the classification process then automatically separates the image into these.
The researchers tested their UAVs with their pre-programmed controllers to access 12 different colonies of sea gulls. They made note of some important points,
Citation: Rush GP, Clarke LE, Stone M, Wood MJ. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony‐nesting seabirds. Ecol Evol. 2018;00:1–13. https://doi.org/10.1002/ece3.4495